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Abstract Today, many security researches focus on survivable or intrusion-toler-
ant systems, which are not conceived to be invulnerable, but rather to be able to
withstand the impact of an attack and continue providing critical services despite
ongoing attacks. We join this fast-growing research community and use this article
to present a solution of file integrity control which is able to detect unauthorized
file system modifications as fast as possible and repair them in order to keep the
system’s integrity, availability and confidentiality.
ª 2004 Elsevier Ltd. All rights reserved.
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Introduction

According to Bishop (2003), ‘‘computer security is
based on three properties: confidentiality, avail-
ability and integrity. Confidentiality is the conceal-
ment of information resources, availability means
the ability to use the desired resource, and finally
integrity refers to the trustworthiness of data or
resources, and it is usually phrased in terms of pre-
venting improper or unauthorized change.’’ A lot
of effort has been placed in the search of highly
secure systems, which is clearly known as quite
a complex goal to be fully achieved. Nevertheless,
practice shows that many security managers and
network administrators still follow this philosophy,
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which results in the formation of systems falsely
considered secure. Fortunately, this philosophy
has been progressively replaced by another one
that fits reality much better: systems will eventu-
ally be intruded, so what should we do in order
to warrant that critical services be provided even
when intruded?

The concepts of survivable systems and in-
trusion tolerance stem out of this new vision. For-
mally, according to Pal et al. (2001), ‘‘attack
survival means the ability to provide some level
of service despite an ongoing attack by tolerating
its impact.’’ In order to tolerate the impact of
intrusions, a system must have mechanisms able
to hamper the advance of an attacker towards
gaining privileges, and attempt to restrain damage
to a single part of the system while still running its
most critical functions.

As a result of maturity in this field, in which
research began about six years ago, a growing
eserved.
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number of contributions have been presented to
the community. Such contributions comprise at-
tempts to formalize concepts, strategies to de-
velop survivable systems and even tools that can
be employed to put the concepts and strategies
to practice.

This paper presents our research, whose contri-
bution is the conception and implementation of
a tool able to aid substantially the making of an
attack-tolerant system through file integrity con-
trol. Controlling file integrity is certainly not a
new idea, let alone using cryptographic hash func-
tions (Menezes et al., 1996; Schneier, 1996) to
make the process easier. There are already various
available solutions such as AIDE,1 L6,2 Integrity3

and Tripwire (Kim and Spafford, 1993). The later
is probably the most popular one. Even though it
is not new, this minor point is of great importance
in the context of survival systems and has not been
adequately explored. This could be because the
existing (or simply proposed) solutions are consid-
ered enough and, if not so, maybe the importance
of file integrity control has been downplayed in
favor of other mechanisms.

Therefore, it is not file integrity control itself
that is new, but rather the way the process is car-
ried out, featuring highly important aspects such
as detection, attack restraint and self-healing.
The absence of these features is often pointed
out as the main weakness of the existing solutions,
as Pal et al. (2001) and Bernaschi et al. (2002)
make clear in their articles. The latter is explicit:
‘‘.research in this area is focused mainly on
the detection of intrusions after attacks have
been successfully completed, and not on their
prevention.’’

It is clear that this present solution alone does
not make a system intrusion-tolerant, but we are
absolutely sure that it may be at least a very valu-
able resource to build survivable systems. It should
be noted that the term system used here means
a set of resources such as hosts and routers which
are combined in order to make a certain organiza-
tional mission possible. Moreover, seeking greater
integration with other ongoing studies in the field,
we use the same notions of security domains docu-
mented in Pal et al. (2001). It can be composed of
a single host or a local network, and may also
include other equipment, such as routers and
switches.

Each security domain should not trust a neigh-
boring domain, e.g., the administrator of one

1 http://www.cs.tut.fi/~rammer/aide.html.
2 http://www.pgci.ca/l6.html.
3 http://integrit.sourceforge.net.
domain must be authenticated every time it
accesses another security domain. The purpose is
to create difficulties to the action of an attacker
by slowing down the speed at which it can gain
access privileges on the system.

External attackers do not have direct access to
the internal subsystems; rather, mechanisms such
as firewalls restrict them to specific services, with-
out full access to subsystems. So, their first targets
are usually the subsystems on the system border
and within easy reach. At first, attacks are neces-
sarily remote, i.e., attackers still do not have any
way to explore the existing local vulnerabilities,
but only to find flaws that can be explored re-
motely and allow them to proceed with the attack.

Having gained some level of privilege in the se-
curity domain which the subsystem is a part of, at-
tackers then move on to a second phase, in which
they seek to gain the privileges needed to finish
their attack, in case they still do not have them.
At this stage, attackers are usually able to install
some tools in the intruded subsystem, such as:

� exploits for local flaws that cannot be explored
remotely, in order to gain more privileges;

� rootkits and backdoors in order to hide their
files and processes, and to ensure their return
even after flaws are possibly corrected;

� scanners, exploits for remote flaws and sniffers
in order to attack neighboring subsystems.

Note that, as the previous item puts it, the in-
truded subsystem becomes a base for the direct
attack to internal subsystems the attacker could
not reach before (Fig. 1). Here, once again it is
the presence of security domains that reinforces
the obstacles an attacker must cross in order to
damage the entire system.

The goal, then, is to slow down an attacker’s ac-
tion as long as possible in order to allow other
mechanisms, which seek to ensure the survival of
critical parts of the system, to have a chance to re-
act by adapting the environment of an application
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Figure 1 Attack progression.
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or even the application itself so that it runs despite
an ongoing attack. One of the possible approaches
to achieve this goal is to block the use of violated
or malicious files (e.g. rootkits).

In this article we suggest the use of file integrity
checking mechanisms to identify these kinds of
files before they are used. The remainder of the
article is organized as follows: section ‘Why and
how to control file integrity?’ discusses the impor-
tance of file integrity control and presents some
concepts and the critical points of the process;
section ‘Secure on-the-fly file integrity checker
(SOFFIC)’ presents details of the conception of
the tool; section ‘Implementation’ has some data
concerning the implementation and the first per-
formance tests. The last section presents the con-
clusions of this present study.

Why and how to control file integrity?

All the codes of any operating system and all of its
applications, as well as configuration files, data
bases and activity logs, are always kept in some
non-volatile memory, which is organized according
to a file system. It does not take a lot of effort to
notice the clear interdependence between the be-
havior of an application and its data (code, config-
uration files, etc.) stored in disks. By altering the
latter, the whole system can be affected, including
access controls implemented by the operating sys-
tem and high level applications.

Not only file content alteration may lead the
system to an insecure, even non-functional state,
but also the insertion of new files, e.g., Trojan
horses (backdoors, rootkits), tools that explore
local vulnerabilities, attack tools (sniffers, DDoS
zombies, scanners), etc.

Even though one of the main pillars of system
security is the security of its file system, none of
the current operating systems implements access
control based on the integrity of the files to be
used, being limited to controlling access based
on the identification of users and their rights.

Having briefly explained the role of the file sys-
tem in the security of such system, perhaps an un-
necessary step for readers who are more familiar
with the area, we now focus on the process of file
integrity control itself, attempting to show the
reader some of its most critical points, and then
providing the means needed to understand the
premises of our tool fully.

To control the integrity of a given object means
to be able to warrant that it has exactly the same
characteristics at a certain time T1 that it had at
a previous time T0, when the object was consid-
ered valid. From that, the most obvious solution
to control file integrity is to make and store
a copy of the files at moment T0, then later, at
T1, compare them to the files present in the sys-
tem. This is called object reconciliation. However
efficient, such procedure has some negative points
that can make its application more difficult:

� verifying integrity by comparing each byte of
each file would cost quite some time, thus
making it not practical to use this tool too
frequently under penalty of harming system
performance; and

� the use of compression algorithms aiming to
save storage space would require even more
time to run the verification process.

At this point of the study, cryptographic hash al-
gorithms4 (Menezes et al., 1996) become elements
that are easily used to store the characteristics of
a number of files at time T0 in a very fast and com-
pressed manner. It is not our goal here to describe
hash algorithms in detail, so we will only mention
their main features which are essential to a solu-
tion of file integrity control. According to Menezes
et al. (1996), they are:

� the calculation of a cryptographic hash does
not use complex operations, being fast and
easy to implement;

� the resulting hash H will always be the same
size regardless of amount and content of the
mass of information (the most usual sizes are
128 bits and 160 bits, respectively, for algo-
rithms MD5 and SHA-1);

� cryptographic hash algorithms have a property
known as resistance to collisions, i.e., it is
computationally difficult to obtain two masses
of information that have the same hash H
value.

To verify integrity at T1, hash is calculated again
(H#) for every file in the system, and then com-
pared to that value H generated at T0.

This method allows for a gain in speed and stor-
age space; however, the possibility of repairing
violated system files is lost since it is not possible
to recover the original data of a file from its hash
H. The solution to this problem is not new and it
is called backup.

The startup process, run at T0, to use a file in-
tegrity control mechanism can be briefly seen in
Fig. 2. The complete process for file integrity con-
trol (Fig. 3) is much more complex than the startup

4 Also called message digest.
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process. In fact, even this can be rather complex
given certain situations.

Time T0, when the backup and hash list are gen-
erated, is crucial to ensure successful integrity
control because this is when the parameters to
verify and recover violated files are setdthe basis
of the entire process. If the system is already cor-
rupted at time T0, the whole process becomes use-
less, since any changes performed by an attacker
would be consolidated and accepted as valid.

The most appropriate T0 for this first step is
right after installation of the system because, if
performed in an appropriate environment, no
malicious agent will have the opportunity to cor-
rupt any part of the system at this critical moment

FS
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Hash List
(Digest List)
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Figure 2 Startup process for file integrity control.
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Figure 3 Complete file integrity control process.
for file integrity control. An appropriate environ-
ment is one where:

� there is control of the physical access to the
equipment where installation is taking place;

� there is not any possibility of remote access to
the system, whether by authorized users or not;

� all programs to be installed have had their
origin and integrity verified;

� after installation, the system is scanned by
programs to detect malicious code, such as
antivirus programs.

In the very frequent cases where the system is
already in operation, the difficulty to obtain high
reliability in its integrity is considerably increased.
In such cases, one must consider the security and
monitoring levels implemented in the system since
its installation, as well as its security incidents his-
tory and how they have been held.

It must be clear that security is not necessary
only when creating a backup and a corresponding
hash list, but also when these two elements are
stored. This is so because if attackers have a
chance to cause changes in these elements, they
may prevent verification and restoration pro-
cesses, and make updates so as to validate their
own changes to the file system.

The rest of the process (Fig. 3) is triggered reg-
ularly, when file integrity is verified. Once one
or more file changes are detected, they must be
classified as either authorized or unauthorized (po-
tentially malicious). Such classification strongly
depends on the knowledge of the system adminis-
trator about its configurations and characteristics.
Only after this classification is it possible to decide
correctly about the following steps, which may re-
sult in triggering an incident response process,
leading to file restoration and system updates as
well as backup and hash list updates.

The time interval between two integrity checks
is the time an attacker has to act undetected. As
a consequence, this interval and security are in-
versely proportional, i.e., the longer the interval,
the weaker the security provided.

Therefore, when the goal is to reach a high se-
curity level, one tends to reduce the time interval
to the minimum necessary. Unfortunately, such
practice threatens the performance of the system
as a whole, and may delay the services provided to
users, perhaps even causing the integrity control
mechanism to be turned off. Hence, performance
is an important factor to be considered when mod-
eling and implementing any file integrity control
mechanism.

As the verification interval increases, the loss
of performance becomes more acceptable,
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i.e., when time intervals between verifications are
greater, any performance loss is temporary and
should not cause damage to the routine operations
of the system. However, by giving attackers more
time to act undetected, the system security can
be compromised.

The loss of performance and security provided
are not determined only by the time interval be-
tween verifications, but also by the manner in
which the mechanism is implemented and the
number of monitored files.

The solution presented in section ‘Implementa-
tion’, instead of minimizing the time between ver-
ifications, uses another strategy in order to ensure
high level of security regarding file integrity,
though strongly reducing its impact on system
performance.

Secure on-the-fly file integrity checker
(SOFFIC)

The first concept of SOFFIC was based on three
main goals:

� not to allow the use of files that have been
altered or included in the system without
authorization;

� to impact the least possible on system perfor-
mance, thus making the solution applicable;
and

� additional cryptography-based mechanisms
must be used to ensure security of the solution
itself.

When the first implementation and subsequent
deeper studies were carried out, another objec-
tive of great importance was defined:

� possibility of automatically repairing the
system after a violation is detected (self-
healing).

It is important to notice this because it is not
practical to monitor the integrity of all files con-
stantly, the strategy chosen is to avoid the altered
or unduly inserted files to be used. Thus, even af-
ter gaining the privileges required for installation,
attackers cannot run rootkits, worms, viruses,
DDoS zombies or even their tools to attack ad-
jacent systems. The result is that attacks are
preventeddif not totally, at least partially to a
point of substantially hampering the action of
attackers.

An attacker might explore this functionality of
SOFFIC to cause a denial of service by altering files
considered critical. As a consequence of this undue
change, SOFFIC would deny access to these files
until the manager restored them. This situation is
avoided by complying with the fourth goal above,
i.e., by giving SOFFIC the ability to repair violated
files automatically. So, when detecting a violated
file, SOFFIC first attempts to restore this file from
a backup and then actually blocks access to it in
case restoration fails.

Architecture

Even though it might slightly overlap with section
‘Implementation’, which deals specifically with
the implementation of SOFFIC, it is necessary to
number its components and their corresponding
descriptions in order to understand the conceived
model fully. These components can be seen in
Fig. 4. Some of them are showed twice only to rep-
resent situations where they are on disk or loaded
in memory.

The next figure shows, from top down, the file
system and the following components:

� Configuration File: file that contains SOFFIC’s
configuration options, such as the IP number of
the ISBB Server, location of HL and TFL, etc.;

� Hash List (HL), or Digest List: it has the hash
values for each file that SOFFIC controls;

� Trusted Files List (TFL): a list with the names of
files that can be accessed without any verifi-
cation; and

� Integrated Secure Backup Base (ISBB): backup
of system files available to SOFFIC to restore
violated files.

Trusted Files
List

CORE

RVFC HL

TFLKsm

Kpub

ISBB

Kernel

User Space

File System

System Callshook hook

Configuration
File

Hash List
(Digest List)

ISBB Serverisbbadmsofficadm

Figure 4 SOFFIC components.
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Still moving downwards in Fig. 4, the compo-
nents inserted in the system kernel are:

� Core: the nucleus of SOFFIC is the most
important component, containing all routines
to verify integrity, digital signatures, etc.;

� HL and TFL: only a copy of the contents in the
corresponding files as described previously;

� Recently Verified Files Cache (RVFC): this
cache avoids repetitive verification of often
used files;

� Symmetric Key (Ksm): a symmetric key used to
make some contents of SOFFIC secret;

� Public Key (Kpub): SOFFIC manager’s public key,
used to verify signatures. The manager keeps
private key Kpri; and

� Hooks: slight changes in system calls that
redirect the execution flow to SOFFIC.

The last part of Fig. 4 shows the components
that run on user space:

� sofficadm: a tool used to generate and update
the Hash and Trusted Files Lists, and other
managerial tasks related to SOFFIC;

� isbbadm: tool used to generate and update
ISBB, and other managerial tasks related to it;
and

� ISBB Server: server that recovers files from the
backup base as requested by SOFFIC, which is
fundamental for self-healing.

Functionality

After this brief explanation of the components, it
is possible to take a closer look at the operation
of SOFFIC. Assuming that HL, TFL, and optionally
ISBB have been generated, the starting point of
our explanation can be a process P that requests
the system to run a file (Fig. 5).

Upon that request, the operating system applies
the Standard Access Control Mechanisms (SACM)
and decides whether to grant access. In case it is
granted, a hook on the system call redirects the
execution flow onto SOFFIC, allowing it to make
a final decision about the access requested by pro-
cess P. On its turn, SOFFIC first looks for an entry in
RVFC referring the requested file. If found, which
means the file has been verified recently, access
is immediately granted; otherwise, the HL is con-
sulted (Fig. 6).

Once an entry is found in the HL, file integrity is
then verified by calculating its hash H# and com-
paring it to hash H stored in the HL. If they are
equal, file integrity is verified, then an entry is
included in RVFC and the file can be accessed.
Otherwise, the file being not valid, SOFFIC tries
to restore it from the ISBB.5

The last resource for SOFFIC, when there are no
entries either in RVFC or HL for the requested file,
is the TFL. The TFL was conceived to deal with ex-
ceptions such as the /tmp directory and its files,
i.e., it can be used to decide which files and
directories can be accessed for reading or writing6

without any verification. If the requested file is in
the TFL, access is granted, but no entry is included
in RVFC.

Even though the TFL is necessary, it must be
noted that the way it operates makes it a critical
component to the security of SOFFIC when imple-
mented and configured.

Finally, if no entry for the file P requested is
found either in RVFC, HL or TFL, access is denied.

SOFFIC’s policy is to deny access to any file that
has not been previously inserted in any of its lists,
whether the HL or the TFL.

Security considerations

Up to now, only the first two goals of SOFFIC have
been considered: not to allow access to violated
files and to attempt to minimize the impact on sys-
tem performance. This was dealt with by using
RVFC and hash algorithms to verify integrity. In or-
der to reach the third goal, it is necessary to ana-
lyze each component of SOFFIC from a security
point of view. The following items present a sum-
mary of this analysis and show the security re-
quirements for each component.

N
SACM

P

System Call 

exec(...)

Access
Denied

Access
Granted

hook

SOFFIC
N

Figure 5 Modified system call.

5 The operation of the ISBB is described separately later in
this section.

6 Execution is excluded here.
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The functional aspects of ISBB as well as the se-
curity requirements of the components directly re-
lated to it are described separately in order to help
understand the solution better.

Configuration file
Obviously, alterations in the configuration file can
affect the operation of SOFFIC in a way the man-
ager does not wish. Besides this, some of the infor-
mation it stores may help an attacker’s action,
such as the IP number of the ISBB Server.

Because of this, the configuration file is digitally
signed by the SOFFIC manager and encrypted with
symmetric key Ksm.

Hash list (in the file system)
The HL alone is secure against undue reading, i.e.,
the secrecy of its content is not a fundamental re-
quirement for the security of SOFFIC. However, se-
crecy can be obtained by encrypting the file with
symmetric key Ksm.

The only essential protection is against undue
writing because, as seen in section ‘Why and how
to control file integrity?’ above, attackers with
privileges to manipulate the HL can consolidate
unauthorized file changes by updating the HL
themselves. This protection is given by a digital
signature of the SOFFIC manager at the time HL
is generated.

It is important to point out the fact that because
the HL is signed, all files whose hashes are
contained in it are signed too, since their hashes
represent the content of each one in a unique way.

Access
Denied

Access
Granted

hook

N

Verify
Hash

RVFC

Add entry in
the RVFC

HL

TFL

N

N

N

Logged events

N

ISBB

Verify
Hash

N

Replace
Invalid File
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L
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Figure 6 SOFFIC functional overview.
Trusted files list (in the file system)
As shown before, the TFL is a very sensitive com-
ponent from a security standpoint. By reading
the contents of this list, an attacker may learn
which files and directories are free from verifica-
tion. As well as undue reading, undue writing
may also significantly harm the security SOFFIC
provides.

Therefore, the protection this component re-
quires and the mechanisms applied are identical
to those of the configuration file: digital signature
of SOFFIC manager and encryption with symmetric
key Ksm.

Core on disk
Core is a part of the system kernel, therefore the
object to be protected is the image of the kernel
itself. If an attacker manages to change the kernel
image, SOFFIC or any other functionality of the
system may be affected.

In order to obtain a minimum security level for
the kernel image, it is included in the HL and its in-
tegrity is verified as soon as SOFFIC starts running
when the system is loaded. SOFFIC does not pro-
vide protection in cases where the kernel image
is completely replaced, so other mechanisms
should be used to ensure boot time security.

Core in memory
In this state, the protection of Core faces the same
problems of Core on disk. SOFFIC itself obstructs
an attacker’s attempt to change the memory-
stored kernel because the tools to do so must be
run locally and SOFFIC only allows the use of valid
files; in other words, the attack could only be car-
ried out with the system tools.

Symmetric key
Symmetric key Ksm is necessary for SOFFIC to ac-
cess practically all of its files at boot time. So, to
avoid this it remains in the system, whether on
disk or in memory, the manager must supply it at
boot time and then SOFFIC uses it and eliminates
it from memory.

Asymmetric key pair
Private key Kpri is not kept in the system, but ra-
ther on off-line media under control of the SOFFIC
manager. Still, it is also protected by a symmetric
key known only and exclusively by the manager.
This key must not be the same as Ksm.

Public key Kpub does not need secrecy, but pro-
tection against undue writing, because attackers
could replace the manager’s Kpub key with their
own public key and then generate valid signatures
before SOFFIC.
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When key Kpub is included in Core, it is pro-
tected by the same mechanisms that protect
Core itself, whether on disk or in memory. If Kpub
is in a file pointed by the configuration file, it is
then encrypted with key Ksm.

Recently verified files cache
While advancing the performance of SOFFIC, RVFC
is also a critical point for security. One of the pos-
sible attacks against SOFFIC is the alteration and
use of a file that has an entry in RVFC. In order
to protect SOFFIC from this kind of attack, file
changes are monitored and every time a file with
an entry in RVFC is modified, the entry is immedi-
ately eliminated.

Like HL, RVFC can be freely readwithout harming
security. Being an internal component of Core, RVFC
is protected by the same means as Core in memory.

Sofficadm
Because sofficadm is the interface through which
the manager configures and maintains SOFFIC, it
is clear that it must be protected against undue
modifications.

In order to avoid this kind of attack, an entry to
sofficadm is added to the HL. Since it is necessary
only to maintain SOFFIC, sofficadm can be kept on
off-line media like private key Kpri.

The requirements described in any of the previ-
ous items must be complied with so that SOFFIC
may have its own security ensured.

Integrated secure backup base

Focusing again on the ISBB, shown very briefly
in Fig. 6, and our fourth goal, below is its detailed
operation.

Access
Denied

Verify
Hash

NL

Auth Locate
File

ISBB

N N

Send
File

Replace
Invalid File

Figure 7 ISBB functional overview.
Having compared hashes and verified that a
given file has been violated, SOFFIC attempts to
restore the file from the ISBB, if it is available. It
is important to remember that ISBB comprises
the backup base itself and the ISBB Server that
tends to SOFFIC requests. Before requesting a file,
it seeks authentication before the ISBB Server.
Upon success, the request is sent and the ISBB
Server locates the file in its backup base (Fig. 7).
Once found, the file is sent to SOFFIC, which then
replaces the violated file and verifies its hash again
(Fig. 6).

ISBB is the fundamental piece that enables
SOFFIC to meet its fourth goal: self-healing. It is
therefore necessary that its own security and that
of the files it keeps is also warranted. This is the
main reason ISBB is independent from SOFFICdit
is possible to keep an ISBB Server in a separate ma-
chine with even more limited access than the
others. There would be no sense in keeping ISBB
on the same machine as SOFFIC because the files
ISBB kept would be under the same protection as
the other system files.

Still, the same ISBB may serve more than one
single instance of SOFFIC (Fig. 8).

To make it possible, it suffices to have a struc-
ture similar to the one presented in Fig. 9. With
this structure, ISBB can keep the files of two differ-
ent systems in its base, e.g., subsystem 1 and sub-
system 2, in a simple and efficient way.

The basic security requirements for ISBB are
three:

� individual authentication of each instance of
SOFFIC before the ISBB Server: this prevents
a given subsystem from accessing files it does
not own. This feature reinforces the separation
of security domains defined in section ‘Secure
on-the-fly file integrity checker (SOFFIC)’.
Authentication is also necessary to prevent
attackers from obtaining copies directly from
an ISBB Server;

� authentication of ISBB Server before each
instance of SOFFIC: the purpose of this is only
to ensure that SOFFIC is receiving the file from

SOFFIC

SOFFIC
ISBB

ServerSOFFIC

Figure 8 One ISBB Server and many SOFFICs.
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a valid source. Here, no additional authenti-
cation mechanism is necessary because SOFFIC
itself verifies the received file hash, i.e., even
without authentication from the ISBB Server,
SOFFIC can be sure files are authentic, or not;
and

� secrecy of communication between SOFFIC and
ISBB Server in both ways: this is to prevent an
attacker from getting a copy of the files
through a sniffer.

The executable file of the ISBB Server itself can
be protected by a local instance of SOFFIC with no
self-healing ability, or basing it on a secondary
ISBB Server.

As for the isbbadmin, which is only used to gen-
erate and maintain the ISBB, it may be kept on off-
line media or included in the HL, like sofficadm.

SOFFIC capabilities

Operating as described and supported by the se-
curity requirements of its components, SOFFIC is
able to:

� keep an attacker, even after a successful first
stage of attack, from operating a Trojan horse,
rootkit or DDoS zombies;

� keep worms and viruses from damaging the
system or even spreading;

� keep an attacker from using tools it installed in
the intruded subsystem to attack neighboring
systems;

� repair violated files automatically, thus pro-
viding self-healing.

In addition, because it uses cryptographic hash
functions, there is no practical possibility of
SOFFIC presenting false negatives, i.e., attesting
that a file is unchanged when it is in fact violated.
Neither the contrary, false positives, as long as the
manager keeps the HL and the ISBB adequately
updated.

When comparing SOFFIC to other solutions like
L6 and Tripwire, the most important features are:

Subsystem 1

File 1
File 2

Subsystem 2

File 1
File 2

ISBB

Figure 9 ISBB structure.
(a) SOFFIC is able to detect the violation of a file
right before it is used in the system, reducing
significantly the resulting risks of a security
break-in;

(b) SOFFIC is able to automatically restore the
violated file from an on-line backup base, thus
providing a self-healing process.

Another very important aspect is that neither
SOFFIC nor any other known solution is capable of
classifying file modifications as authorized or not.
Therefore, they will work properly, detecting just
unauthorized modifications, only if the system ad-
ministrator keeps the hash list updated. Otherwise,
any file changes are handled as unauthorized.

Implementation

The purpose of this article is not to describe in full
detail the whole conception of the solution along
with its implementation.7 Therefore, we will only
highlight a few interesting points.

From its first prototypes, SOFFIC has been im-
plemented on Linux, and that has been so for four
reasons:

� Linux kernel source code is open: this makes
the study of the kernel and the implementa-
tion of the solution much easier;

� GNU license: this ensures freedom of distribu-
tion of the implemented solution;

� It is easy to port the solution to other Unix
platforms; and

� Other works of our research group are also
based on Linux.

All cryptography functions used on user space
are obtained with OpenSSL library.8 Regarding
the kernel, all hash and symmetric key functions
are obtained from the application of patch Crip-
toAPI.9 As for the function of digital signature ver-
ification RSA, it was implemented separately as
a patch we developed for the kernel.

The implementation is completely independent
from the file system used, since SOFFIC is in the
Virtual File System (Fig. 10). Therefore, one can
always refer to a file through its device/inode
pair, regardless of whether such structure exists
in the file system (Beck et al., 1998; Bishop, 2003).

As a result, the HL is sorted according to the
device/inode pair and then the binary research
method is used, which is widely known as fast.

7 Latest public release available at: http://www.inf.
ufrgs.br/~gseg/.

8 http://www.openssl.org.
9 http://www.kerneli.org.

http://www.inf.ufrgs.br/~gseg/
http://www.inf.ufrgs.br/~gseg/.
http://www.inf.ufrgs.br/~gseg/
http://www.openssl.org
http://www.kerneli.org
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Along with the fact that the HL is all in memory,
there is an important factor to reduce the impact
on system performance.

Because RVFC is another essential component
for the performance of SOFFIC, it was imple-
mented with 256 entries and each entry position
is defined according to a hash table.10 The search
with a hash table is even faster than binary re-
search, resulting in great speed and flexibility for
the RVFC.

The performance tests run on the first versions
of SOFFIC resulted as expected, i.e., without using
RVFC the access time to the file system grew sub-
stantially, increasing by 60e80%. As the hash cal-
culation requires one extra reading, this effect
was foreseeable. The use of RVFC lowered the im-
pact on the file system drastically, with increases
around 6e10%. Tests were run on a Pentium III
1 GHz, with an HL of approximately 11,000 entries.

Aware that these tests were rather limited, we
are now developing another work aimed to mea-
sure the impact of SOFFIC on different environ-
ments adequately.

In order to reinforce the level of security of
SOFFIC, we have been performing several practical
experiences with SchlumbergerSema CryptoFlex
smartcard. This smartcard has its own processor
and several built-in cryptography functions, be-
sides its own file system with robust access con-
trols. We aim not only to ensure greater security,
but also to ease the management of symmetric
and asymmetric keys as well as the authentication
of the manager before SOFFIC.

From the management point of view, the char-
acteristics of the environment in which SOFFIC will

Virtual File System

ext 2 vfat proc

Device drivers

Buffer cache 

...

File System

...

SOFFIC

hooks

Figure 10 SOFFIC and the Linux Kernel (Aivazian, Linux
kernel internals).

10 It is not the same as a cryptographic hash.
be used determine how simple it is to deploy
SOFFIC. The more stable the environment, regard-
ing files creation and modification (essentially pro-
grams and configuration files), the more easily can
SOFFIC be used. Some environments considered
quite stable and thus perfect for SOFFIC are fire-
walls, HTTP/FTP servers, mail servers and data-
base servers. In these cases the hash and trusted
files lists need to be generated only once, and
there is a minimal cost for updating them. Some
worst cases for SOFFIC are developing stations
and prototype environments, where the lists must
be updated quite frequently.

The most recent version of SOFFIC publicly
available is 0.2p2, and it can be found at http://
www.inf.ufrgs.br/~gseg/.

Conclusion

The integrity control mechanisms currently avail-
able are not appropriate to the goals focused in
the construction of survivable systems and this
may be the reason their importance in this sce-
nario has been reduced.

Seeking to elaborate a mechanism to fill in the
existing gap, we have developed the model of
a tool with features designed for the application
in survivable systems. Among these is the ability
to delay an increase in privileges to a system’s at-
tacker through controlling and repairing the dam-
ages (self-healing) caused by the attack, thus
ensuring the continuity of the critical operations
of the system.

The implementation presented, though in its
initial stages, already shows the practical feasibil-
ity of the mechanism, and it can be immediately
applied to protect files to be run. The tool should
soon be fully implemented and then much more
detailed performance tests can be run.

Finally, we hope this study moves on and is able
to cause important discussions for the develop-
ment of this topic in survival systems and to aggre-
gate value through collaborative work with other
researchers.
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